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Abstract. Vacuum structure in SQCD is analysed. I t  is pointed out,  in particular, that 
quantum mechanical tunnelling in the massive theory is mediated by pure instantons a n d  
zero classical scalar fields due  to the trivial topological structure of the set of minima of 
the classical potential. In the massless theory, on the other hand,  the set of minima has  a 
non-trivial topology, as  a result of which an  instanton has to be accompanied by a 
topologically non-trivial scalar field in order  to mediate the tunnelling. Indeed, this 
configuration has  a n  infinite action if a mass term is added,  and  its tunnelling is completely 
suppressed unlike that of the trivial scalar configuration. 

Supersymmetry breaking was extensively studied recently [ 1-31. Since supersymmetry 
cannot be broken perturbatively it is the non-perturbative effects, mainly instantons, 
which were used to analyse possible effects of supersymmetry breaking. Whereas in 
pure Yang-Mills theory vacuum structure is known, it is less known in theories which 
include scalar fields, such as supersymmetric QCD. This is, of course, important if 
tunnelling effects are to be considered. 

In pure Yang-Mills theory the vacuum is labelled by an index n, the Pontryagin 
index. When scalar fields are added the topology of the set of minima of the classical 
potential has to be taken into account. Normally if the gauge group is G broken down 
to H, this set of minima, M, can be taken as the coset space G/H$. Thus if it has a 
non-trivial topological structure, there is another index, k,  which characterises the 
vacuum. 

In the following we analyse the vacuum structure in SQCD with gauge group SU(2) 
and show that k = n (or k = 0) if the scalar fields are in the fundamental representation 
and  the theory is massless, and k = 0 in the massive theory. That means, in particular, 
that in the massless theory tunnelling amplitude between In)+ In + 1) goes through 
Euclidean configurations which are topologically non-trivial for the gauge potentials 
(instantons) and the scalar fields simultaneously, whereas in the massive theory the 
instanton is accompanied by a classical scalar configuration, 4 = 0. Indeed, if the 
topologically non-trivial scalar configuration of the massless theory is used in the 
massive theory, tunnelling is totally suppressed because the classical action diverges 
due to the contribution of the mass term. 

The Lagrangian of an SU(2) supersymmetric model contains, apart from the gauge 
supermultiplet, one matter and  one antimatter supermultiplets transforming under the 
fundamental representation of the gauge group. It is given in the massless theory by 

(1) 2 = 2 S Y M  + %"r 

+ Present address:  Institute for Theoretical Physics, University of Bern, CH-3012 Bern, Switzerland. 
$ In theories with an accidental symmetry M may not coincide with G / H .  But such a structure does not 
generally survive quantum corrections, a s  a result of which M can be identified in the quantum level with 
G I H .  
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where LEsvu is the super-Yang-Mills Lagrangian given in the Wess-Zumino gauge by 

YsYx,= - a F ~ , , F * " " + ~ " i D , f * " A + + c  (2) 

with FZy = a,A; -a,A; + gEoh'AiA:, D: = 8''' + gcab'Ai, A; are the gauge potentials 
and A'' are Weyl spinors. They are expressed in Weyl basis with the Dirac matrices being 

and  Tr(Z,Eu) = 2g,,, with Minkowskian metric g,,, = diag( 1, -1, -1, -1). Zm,,,,, is the 
matter field Lagrangian 

Y,,,,,,,, = (2p41)Ag*4, +(gE42)L9)**42+ y7Ti9pZp$, + $:i9:Xpy7?. 

(3) 

such that {+,, 4,) ( i  = 1 ,2 )  form the matter supermultiplets, 9, =a ,  + i g A l i r a  and i r a  
are the SU(2) generators in the fundamental representation. 

Classically the vacuum is given by the zero-energy states. These are defined by 
= +2 = A = FWy = 0, 41 parallel to 4; in group space and 9,41 = SE4, = 0. The first 

condition defines the vector potentials to be pure gauge, A$T" = ( i /g )  U - ' ( x ) d , U ( x )  
where U ( x )  E SU(2) and x E E3 (Euclidean 3-space). These are the gauge transforma- 
tions left after fixing the gauge A," = O .  We compactify ET into S3 by imposing the 
boundary conditions U ( x )  I. Then U ( x )  belongs to the set of maps S3+ SU(2) 
classified by the third homotopy group of SU(2), r 3 ( S U ( 2 ) )  = Z. 

The second requirement ~,c#J, = 0, has an integrability condition F;,$ra4, = 0, 
which is trivially satisfied in the vacuum ( FZy = 0). The solution is then 

T a - a -  T a  ~2 +% ( d : T a h a $ l  + 4 2 7  A $ 2 )  -&g2(4;Ta4, - 427 4 2 )  + HC a 

T a  
4, = 4; = P exp( -ig J,. A: d f )  v 

where the integral is along a path I' from -cc up  to x and U is a constant vector in 
the fundamental representation of the group. The integrability condition guarantees 
that 4, ( i  = 1 ,2 )  is independent of the path. It is a function of x only. Indeed, by 
substituting A", which is a pure gauge, it is easily found that c$,(x) = #;(x) = U ( x ) u .  
Thus 4,(x)( i = 1 ,2 )  define an  S,  of arbitrary radius / V I ,  including zero. For U # 0, 4,(x)  
like U ( x )  belong to the set of maps 4r : S3 + S3 classified by r 3 ( S 3 )  = Zf. With this we 
find that the configuration space of the scalar fields and the gauge potentials are 
classified by the same index n, the Pontryagin index. In particular they are both 
topologically non-trivial simultaneously. When U = 0, on the other hand, there exists 
a special set of vacua with 4, = 42 = 0. The scalars have a trivial topology (k = 0), 
whereas the Yang-Mills potentials are classified by the Pontryagin index n as in the 
massive theory (this will be shown later). 

The vacuum is then given by 10) =Z:=_, exp(in0)ln) and quantum mechanical 
tunnelling between vacua differing by one unit of topological charge is provided by 
the single instanton or single anti-instanton: 

T Generally U,, the length of d, ( i  = 1.21, is not a constant and the scalar fields do not define an S,. However, 
for the vacuum U =constant and we get the maps S, -P S,. 
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and the scalar field configurations [4] (when U # 0) 

where T ~ ~ ~ , ,  j j a p u  are the 't Hooft symbols, x l ,  x2, p ! ,  p2 are the location and size of 
the instanton and anti-instanton respectively, and ?; = 7, = (iT,, U). The scalar fields 
are found as solutions to the Euclidean equations of motion 9 2 4 1  =0,  9'4;=0, 
whereas the instanton is found from the self-duality condition. This, however, is not 
a solution of the Euclidean equation of motion because of the background of the scalar 
fields. An exact solution does not exist provided the scalars' contribution to the action 
does not vanish. This can be proven along the line originated by Derrick [ 5 ]  (Derrick's 
theorem) by using a simple scaling argument, as will be shown next. 

Classically the fermionic fields vanish and the classical Euclidean action (or the 
energy for static solutions) in D dimensions can be written as 

S z  = dDx[aF",F;,+t(9,4)t~/.14 + V ( 4 ) ] .  ( 6 )  s 
Here we take for simplicity one scalar field 
scaling the fields 

and V ( 4 )  is the self-interaction. By 

we find 

Sf: = d D ~ [ f A 4 - D F ~ , F ~ , + ~ h 2 - D ( ~ / . 1 4 ) T ~ p 4  +A-DV(r#J).  (8) I 
The equations of motion are found by requiring the action (or the energy, for static 
configurations) to be stationary under an arbitrary variation of the fields, and in 
particular also under the scale transformation ( 7 ) .  Thus S z  cannot be stationary with 
respect to this variation if all the terms in (8) are either increasing or decreasing 
functions of A. As a result, solutions can exist in D = 1 (kinks, in  which case the gauge 
potentials are absent), D = 2 (vortices) and D = 3 (monopoles). In D = 4 there is a 
classical solution only for pure Yang-Mills theory (instantons), and by including the 
interaction with the scalar fields the instantons are no longer solutions of the classical 
equations of motion [ 5 ] .  

As mentioned above an exact minimum of the action can be found in D = 4 only 
when the scalar fields' contribution to the action vanishes. Thus, when U = 0 we have 
a trivial topology of the scalar fields' configuration space and the instantons alone 
provide the tunnelling amplitude for i n ) +  In + 1). The Pontryagin index of the instan- 
tons is the difference between the indices of the vacua in )  and In + l), as was proven 
in [ 6 ] .  When U f 0 the configuration space of the scalar fields is topologically non-trivial, 
and the configurations ( 5 )  together with the instantons (4) provide the tunnelling 
between In, n ) + l n + l ,  n + l ) .  To see that we calculate the index. The Pontryagin 
index is given by 

I p = y  327r g' J d4xF;,F;, ( 9 )  
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where 

F;” = h,”YP”F;,. 
It is gauge invariant and  a total divergence 

F;YFZY =d,K, =$E,,ypmd,, Tr(A,F,, -$gA,A,A,). 

Choosing the gauge A. = 0 we find 
Z p =  n( t = C O )  - n( t = -CO) = An 

where n is the vacuum index of the gauge potentials: 

Here we use the fact that, for t = *CO, the field strength vanishes and  the gauge potential 
is a pure gauge. However, at t = *CO we also have 9,4 = 0 (4  represents either or  
4f) or 4 = U ( x ) u ,  and we may therefore write Zp as 

I p =  k(  t = C O )  - k (  t = -CO) = Ak (14) 
where k is the vacuum index of the scalar fields as given in [7]. Expressing 
of real fields 4 = ($;I:$;) the vacuum index k is given by [7] 

in terms 

Thus Zp is the difference between the vacuum indices both of the scalar fields and  the 
gauge potentials, and  we also have k = n, as has already been mentioned above. As 
the field configurations (4) and (5 )  interpolate between the fields at  t = -CO and t = CO 

with Zp= 1 ( A n  = Ak = 1 )  we find the tunnelling In, n)+ In + 1,  n + 1 )  by taking (4) for 
the instantons and  ( 5 )  for the scalar fields. 

The Euclidean action of these field configurations is finite: 

(16) 3 2 2  SE = 8.rr2/g2+4.rr-v p 

where the first term is the instanton’s (anti-instanton’s) contribution and  the second 
is the contribution of the scalar fields ( 5 ) .  It results from the kinetic energy and depends 
on  the instanton’s size, p .  Note that p = 0 minimises the action for a given index. This 
is the case when the scalars’ contribution to the action vanishes. We note also that 
for U = 0 we have the instanton’s action 8.rr2/g2.  

We analyse the massive theory in a similar way. We need first to take into account 
the extra mass term: 

.re,,,, = -4Tma4, - 4 ; m 2 + ,  - ~ : m + ~  - (L:mJ2. (17 )  
It destroys the flat directions of the potential of the massless theory (4, parallel to 
+?). Thus the vacuum is uniquely defined by = G2 = A =0,  A E f P  = 
( i /g )  U - ’ ( x ) a , U ( x ) ,  and the Pontryagin index labels the gauge potentials only. The 
scalar fields are topologically trivial. This means that quantum mechanical tunnelling 
between vacua differing by one  unit of topological charge is provided by the instantons 
or  the anti-instantons (4) with 4’ = +2 = 0. Indeed, if instead one takes the non-trivial 
configurations of ( 5 )  when the mass term is included, the classical action diverges and 
quantum mechanical tunnelling is completely suppressed?. 

t I t  should be noted that tunnelling in the massive theory was calculated with the configurations ( 5 )  in [ I ,  21 
ignoring the infinite action of these configurations. In [3], on the other hand, the configuration U = 0 in the 
massive theory was used. 

= +2 = 
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We end this paper with some general remarks about vacuum structure in theories 
which include scalar fields. Generally, the vacuum is classified by the Pontryagin index 
characterising the maps r 3 ( G )  of the zero-energy gauge potentials. I f  there is no 
accidental symmetry and G is broken down to H by the set of minima, M ,  of the 
potential of the scalar fields, M can be identified with the coset space G/H.  As a 
result, the set of zero-energy scalar fields define the maps r 3 ( G / H ) ,  classified by an  
index k. A relation between k and the Pontryagin index n, can be found from the 
exact sequence of maps 

h 
r3(H)A r 3 ( G ) A  r , (G/H)-+ rj(H)L r 2 ( G )  . . .  (18) 

which means that 

Im i  = K e r j  ( 1 9 ~ )  

I m j  = Ker k. (196) 

Thus, for example, if H is Abelian ( the  identity or a product of U( 1) factors) r3( H )  = e 
(the identity) and v2(H) = e f .  Therefore r3( G) = r3 (G/H)  and k = n. The example 
of such a case is G = SU(2), 4 in the fundamental representation ( H  = I )  or 4 in the 
adjoint representation ( H  = U( 1)).  In both cases k = n. This was proven in [7] where 
also the indices of the maps r 3 ( G / H )  for both cases were explicitly shown to be equal 
to n. 

In the above, where we analysed massive and  massless SQCD, G / H  = S ,  in the 
massless theory (G  = SU(2), H = I )  and it is one point ( 4 ,  = d 2 =  0) in the massive 
theory (the group G is unbroken). Therefore k = n (or k = 0) in the massless theory 
and  k = 0 in the massive theory (which is achieved by taking U, the vacuum expectation 
value of the scalar fields, to be zero). 

To summarise we have pointed out in the above that vacuum structure in theories 
which include scalar fields (such as SQCD) depends not only on the topology of the 
gauge group but also on the topology of the set of minima of the scalar potential. In 
particular, this topological structure depends on whether the theory ( SQCD) is massive 
or massless. As a result, different field configurations induce the tunnelling in the 
massive and the massless theory ( 4 ,  = 4; = U(r)u for the massless theory and 4, = 
4; = 0 for the massive one, accompanied, of course, by the instanton's gauge potentials). 
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